

BUILDING CONSTRUCTION TEST LABORATORY

6 Gatwood Close, Padstow NSW 2211

Phone: 02 9772 2511 Fax: 02 9772 2557 Email: bctestlab@gmail.com

TEST REPORT

Scaffold Plank Clip Holding Capacity Test

Date of test: 6 December 2016
Test report number: BCTL –16075
Client: Scaff-Hold Pty Ltd

4. Number of Test Samples: 5

5. Test Detail

Scaffold plank clips are used to prevent turnover of plank cause by uplift wind force. Uplift wind force is estimated based on AS/NZS 1170.2:2002. Test is setup to measure the holding capacity of the scaffold plank clip against the uplift force.

6. Test setup

Please see attach Figure 1 and 2.

7. Test results

Ultimate uplift force (one pair of clip)

Sample	Uplift force (Kg)	Uplift force (N)
1	34	333
2	36	353
3	34	333
4	36	353
5	36	353
Mean	35	345

Self-weight of scaffold plank 14 Kg or 139 N

Therefore, holding capacity of each clip should be

$$(345 - 139) \div 2 = 103 N$$

8. Reference

AS/NZS 1170.2:2011 Structural design actions Part 2: Wind actions

Uplift wind force estimation:

Design wind pressures $p = 0.5 \rho_{air} V^2 C_{fig} C_{dyn}$ (Clause 2.4.1)

Density of air $\rho_{air} = 1.2 \ kg/m^3$ (Clause 2.4.1)

Design wind speed $V_{des} = 30 \text{ m/s}$ (minimum, Clause 2.3)

Regional wind speed V_R where R (average recurrence interval) is the inverse of the annual probability of exceedance of the wind speed.

Regional wind speed (Sydney, 50 years recurrence interval) $V_{50} = 39 \ m/s$ (Table 3.1) Regional wind speed (Sydney, 100 years recurrence interval) $V_{100} = 41 \ m/s$ (Table 3.1)

Aerodynamic shape factor $C_{fig} = C_p K_a K_l$ (Appendix D3.1)

Net pressure coefficients $C_p = 0.4$ (Table D4(A)) Area reduction factor $K_a = 1.0$ (Appendix D1.2)

Local pressure factor $K_l = 1.5$ (Table D1)

 $C_{fig} = 0.4 \, \times 1.0 \, \times 1.5 = 0.6$

Dynamic response factor $C_{dyn} = 1.0$ (Clause 6.1)

Area of plank $A = 2.4 \times 0.225 = 0.54 \, m^2$

Design wind distributed force $f = p \times A$

Minimum design wind force $f_{min} = 0.5 \times 1.2 \times 30^2 \times 0.6 \times 1 \times 0.54 = 175 N$

Sydney, 50 years recurrence interval design wind force

 $f_{50} = 0.5 \times 1.2 \times 39^2 \times 0.6 \times 1 \times 0.54 = 296 N$

Ceny

Sydney, 100 years recurrence interval design wind force

 $f_{100} = 0.5 \times 1.2 \times 41^2 \times 0.6 \times 1 \times 0.54 = 327 N$

The tests were carried out under my supervision

Dr. Lida Song Signature:

B.E., M.E. PhD (Civil Eng), C.P.ENG.(659737)

Technician: Lang Lin (B. Engineering)

Signature:

Appendix

Figure 1: Test Setup

Figure 2: Test Setup (Clip)

Figure 3: Clip before clamp